Nombre original: Predicting Individual Differences in Response to Sleep Loss: Application of Current Techniques.
Predicción de las diferencias individuales en la respuesta a la pérdida de sueño: aplicación de las técnicas actuales
Publicación científica sobre la evaluación cognitiva en la fatiga de los pilotos
Gestiona cómodamente los pacientes de las investigaciones desde la plataforma para investigadores
Evalúa y entrena hasta 23 habilidades cognitivas a los participantes de tu estudio
Comprueba y compara la evolución cognitiva de los participantes para los datos de tu estudio
Autores: Joseph F. Chandler1, Richard D. Arnold1, Jeffrey B. Phillips1, Ashley E. Turnmire1.
- 1. Naval Medical Research Unit.
Revista: Aviation, Space and Environmental Medicine (2013), vol. 84 (9): 927-937.
Cita este artículo (formato APA):
- Chandler, J. F., Arnold, R. D., Phillips, J. B., Turnmire, A. E. (2013). Predicting Individual Differences in Response to Sleep Loss: Application of Current Techniques. Aviat Space Environ Med., vol.84, pp.927-937.
Conclusión del estudio
CogniFit puede medir variables muy relevantes para predecir el rendimiento individual de los usuarios ante la fatiga. Esto puede ayudar a reducir el riesgo de accidente en los pilotos militares y los civiles, ya que el cansancio es una variable recurrente en diversos tipos de accidentes.Incluyendo algunas variables, como el Tiempo de reacción (p=0.009), la Memoria a corto plazo (p=0.023), la Atención dividida (p=0.026) o la Flexibilidad cognitiva (p=0.002) en los modelos predictores, el porcentaje de varianza explicada pasa del 13,8% al 35,7%.
Resumen del estudio
La fatiga es uno de los principales factores que pone en riesgo la seguridad durante el transporte militar. Se han hecho modelos que predicen la respuesta a la fatiga, pero aún no son lo suficientemente precisos, ya que no contemplan las diferencias individuales en cuanto a la sensibilidad a la fatiga. En cambio, se propone que la capacidad predictiva de estos modelos podrían mejorar si se realizan medidas cognitivas con herramientas como CogniFit y oculométricas para contar con las diferencias individuales.
Se midieron las diferentes variables cognitivas y oculométricas con los participantes descansados y cada 3 horas durante un proceso de 25 horas de vigilia (de modo que se obtuvo la puntuación del grupo y la individual). Se pudo comparar, además, el rendimiento real con el rendimiento esperado. Los resultados indicaron que, al añadir estas medidas a los modelos preexistentes, pasaron de explicar el 13,8% al 35,7% de la varianza. Esto significa que, utilizando CogniFit y otras medidas para detectar las diferencias individuales, se puede mejorar enormemente la predicción del rendimiento durante la fatiga y, por tanto, mejorar la seguridad.
Contexto
La fatiga debida a la falta de sueño es uno de los principales riesgos a los que tienen que hacer frente tanto en el transporte militar, como en el transporte civil. En principio, la solución para estos problemas sería el dormir adecuadamente y/o recurrir a fármacos. No obstante, en ocasiones esto no es suficiente. Gran parte de esto se puede prevenir a través de la predicción del rendimiento de una persona o midiendo directamente la capacidad del individuo para actuar en el momento adecuado. Este modelo de predicción, en cambio, tiene una efectividad moderada por sí solo.
La relativa falta de éxito de este modelo puede ser debido a que da por hecho que todos los individuos tienen unos ritmos circadianos y una respuesta ante la fatiga semejantes; mientras que los estudios apuntan a que las diferencias individuales en estos ámbitos son significativas. Alguno de los aspectos que interfieren en esta respuesta ante la fatiga es el funcionamiento cognitivo del individuo.
Por tanto, cabría esperar un aumento de la efectividad del modelo predictivo si incluimos medidas que tengan en cuenta las diferencias individuales, como las medidas cognitivas y las oculométricas.
Metodología
Participantes
Los participantes consistieron en 15 voluntarios del personal militar en servicio activo (13 hombres y 2 mujeres, con edades media de 24,7 años y 21,5 años respectivamente) del programa Naval Aviation Preflight Indoctrination (API) a bordo de la Naval Air Station Pensacola. Para participar en el estudio, se controló el consumo de alcohol, cafeína y tabaco, además debían estar exentos de problemas neurológicos, psiquiátricos o relacionados con el sueño.
Procedimiento
Se aplicó un diseño de medidas repetidas para conocer los efectos de la privación del sueño en el rendimiento cognitivo y oculométrico, tanto a nivel de grupo, como a nivel individual. En primer lugar se registró la línea base y luego se tomaron los datos durante la deprivación del sueño.
Análisis estadísticos
El análisis se llevó a cabo en tres pasos:
- Paso 1: Se realizó una serie de ANOVAs para cada criterio y variable predictora medida en cada ensayo. De esta forma se determinó qué variables mostraron cambios a través del tiempo.
- Paso 2: Se realizó una serie de modelos lineales jerárquicos bivariados con efectos fijos y aleatorios con el objetivo de predecir cuándo la fatiga iba a producir un menor rendimiento y, a su vez, descubrir diferencias no detectadas en el análisis a nivel de grupo. Se detectó un efecto grupal (p<0,05) y diferencias individuales dentro de ese efecto global (0<0,05). Tras esto, se realizó un modelo lineal jerárquico multivariado para saber qué variables predictoras compartían varianza explicativa a nivel estadístico y relación a nivel conceptual.
- Paso 3: Se realizó una serie de modelos lineales generales a partir de las variables predictoras significativas del paso anterior. Con ello, se buscaba conocer la capacidad predictiva del modelo al tener en cuenta factores cognitivos y oculométricos.
Resultados y conclusiones
En el Paso 1 del análisis de datos, se obtuvieron los efectos de grupo. Se pudo observar que hubo efectos significativos en el tiempo de reacción (p=0.009), en la memoria a corto plazo (p=0.023), en la atención dividida (p=0.026) y en la flexibilidad cognitiva (p=0.002). Con la fatiga, se producía una reducción del rendimiento de estas capacidades cognitivas, por lo que se tuvieron en cuenta como variables predictoras en el siguiente paso. En el Paso 2 del análisis, se obtuvieron las diferencias individuales a través de las relaciones significativas entre distintas variables con efectos fijos o aleatorios. En el paso 3 del análisis de datos, se observó que cuando sólo se empleaban las medidas clásicas de predicción, las predicciones sólo podían explicar un 13,8% de la varianza. En cambio, añadiendo las variables cognitivas significativas, las predicciones podían explicar un 35,7% de la varianza.
Estos resultados indican que añadir algunas variables sensibles al cansancio a los modelos predictivos habituales, como las que mide CogniFit, puede ayudarnos a predecir de manera más precisa cuándo el rendimiento va a verse afectado por la fatiga. Conocer esta información puede ser de mucha utilidad para prevenir accidentes y tomar medidas de precaución tanto en ámbitos aéreos militares como civiles.